浅析地铁风机的技术要求及结构

可逆轴流风机在地铁上主要有两种运行模式:
①作为隧道事故/冷却风机,主要用于地铁区间通风,列车阻塞、火灾时的通风和排烟,并根据运行模式的要求进行正转或反转运行;
②用于车站公共区空调通风/区间通风系统。风机可通过送、回管路对车站公共区空调通风,当需要区间、夜间通风时,通过风阀转换实现对区间的通风换气,以满足区间通风性能要求。该类风机兼容了车站及区间火灾事故发生时的通风。
 
地铁的特殊工作环境和特点给地铁风机的设计提出了特殊的技术要求:
①防火要求和通风模式的需要,地铁风机要能够满足反风要求,而且要安全可靠;
②为满足列车火灾时的通风,地铁风机还需要满足耐高温要求;
③由于列车运行的阻塞效应、正常和早上、晚间对隧道的通风清洁等多种工况要求,地铁风机的管网阻力变化很大,经常会在旋转失速流量区间工作,所以,地铁风机要防止喘振;
④风机要解决高效低噪、电机防潮等基本问题。
 
  地铁轴流风机最典型的要求是风机能提供反向通风,而且为了保证地铁运输安全,担负防火功能的地铁风机必须能可靠和便捷地实现反风。 曾经有人提出采用普通单向轴流风机通过在基座上转动180°来实现反风的发明专利,也有人提出采用动叶直接反转180°的方式来实现反风的实用新型专利。但都由于结构过于复杂,保养不便,在实际运行中不可靠而没有得到任何应用。
 
    目前常用的地铁风机基本结构与普通风机一样,即采用B5型内置电机,电机外的风机内筒具有和轮毂一样大小的直径,风机内筒(电机筒)由沿圆周均匀分布的静叶支撑在风机外筒上,而风机转子以悬臂支撑方式安装在电机伸出端,这样只需要通过电机反转就使得动叶反转,从而实现反风,结构简单可靠。但是为了保证完全可逆运行,风机动叶必须采用特种的反向对称翼型设计。 
 
  地铁系统的防火要求需要风机整机能耐150℃高温1h以上。与普通消防排烟风机不同的是,在地铁火灾工况下,风机周围都是高温烟气,不可能有新的并低于环境温度的空气被引到电机周围来为电机降温,这就要求电机本身要有良好的耐高温性;其次,叶片材料、电动机、轴承润滑油脂和软连接等的选用都要充分考虑高温下的运行性能。
 
  至于防喘振要求,一种比较好的做法就是将适用普通轴流风机的防喘振环加设在地铁风机动叶片两边。防喘振环(也称分流器)是一种环形的带有若干小导流片的装置,其环内的小导流片可以将进口气流进行一定的回流放空,而且具有自适应能力,从而可以使风机特性曲线在失速区的大范围内保持稳定。就笔者实际开发地铁风机产品的经验看,这种方法可以保持流量大范围变化时,压力一直随流量减小而增高。从有限的资料看,加设防喘振环后,风机效率将下降2%~4%。
 
  地铁可逆风机除了要满足以上特殊要求外,还需要风机效率尽量高,特别是地铁风机作为地铁交通系统中主要的耗功设备,数量大,全年运行,因此,高效可逆是地铁风机最基本的要求。目前国内外对地铁风机气动性能研究的文献相对较少,研究也不充分,以下将对地铁风机特殊的气动问题以及最新的进展情况进行介绍。

标签:  风机 轴流风机